On Congruences of Jacobi Forms

نویسنده

  • OLAV K. RICHTER
چکیده

We consider congruences and filtrations of Jacobi forms. More specifically, we extend Tate’s theory of theta cycles to Jacobi forms, which allows us to prove a criterion for an analog of Atkin’s U-operator applied to a Jacobi form to be nonzero modulo a prime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan Congruences for Siegel Modular Forms

We determine conditions for the existence and non-existence of Ramanujan-type congruences for Jacobi forms. We extend these results to Siegel modular forms of degree 2 and as an application, we establish Ramanujan-type congruences for explicit examples of Siegel modular forms.

متن کامل

The Action of the Heat Operator on Jacobi Forms

We investigate the action of the heat operator on Jacobi forms. In particular, we present two explicit characterizations of this action on Jacobi forms of index 1. Furthermore, we study congruences and filtrations of Jacobi forms. As an application, we determine when an analog of Atkin’s U-operator applied to a Jacobi form is nonzero modulo a prime.

متن کامل

p-adic aspects of Jacobi forms

We are interested in understanding and describing the p-adic properties of Jacobi forms. As opposed to the case of modular forms, not much work has been done in this area. The literature includes [3, 4, 7]. In the first section, we follow Serre’s ideas from his theory of p-adic modular forms. We study Jacobi forms whose Fourier expansions have integral coefficients and look at congruences betwe...

متن کامل

Rank-crank Type Pde’s and Non-holomorphic Jacobi Forms

In this paper we show how Rank-Crank type PDE’s (first found by Atkin and Garvan) occur naturally in the framework of non-holomorphic Jacobiforms and find an infinite family of such differential equations. As an application we show an infinite family of congruences for odd Durfee symbols, a partition statistic introduced by George Andrews.

متن کامل

Jacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients

In this paper, we study congruences on sums of products of binomial coefficients that can be proved by using properties of the Jacobi polynomials. We give special attention to polynomial congruences containing Catalan numbers, second-order Catalan numbers, the sequence Sn = ( 3n)( 3n 2n) 2( n )(2n+1) , and the binomial coefficients ( 3n n )

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008